Brandt
Biology 30
Microscope Worksheet:

Calculating Magnification. Converting Measurements, Estimating cell size, Calculating Field of View, Scale

1. Calculate total magnification: Ocular x Objective

Ocular	Objective	Total Magnification
10 X	4 X	
15 X	10 X	
5 X	12 X	
10 X	10 X	
10 X	40 X	

2. What are the possible magnifications of a microscope with an ocular marked 10X and objectives marked 5X, 15X, 30X and 60X?
3. Convert the following measurements: $1 \mathrm{~mm}=1000 \mu \mathrm{~m}$
a. $9.2 \mathrm{~mm}=$
b. $\quad 5900 \mu \mathrm{~m}=$
c. $\quad 0.083 \mathrm{~mm}=$
d. $61000 \mu \mathrm{~m}=$
4. Estimating cell size: (Divide the field of view by the number of cells that occupy the diameter.)
a. The field of view is 2500 um . If a cell takes up $1 / 5$ of the field of view, how long is the cell?
b. A student counts 50 cells across the diameter of the field of view, and there are 70 rows of cells. If the diameter of the field of view is $3500 \mu \mathrm{~m}$, what is the length and width of the cells?
5. Calculate the field of view: Use a ratio. As magnification increases, field of view decreases.
a. (1:1) Low power: $4 \mathrm{X}=\quad 5000 \mu \mathrm{~m}=\quad \mathrm{mm}$
b. (2:5) Medium power: $10 \mathrm{X}=$ \qquad $\mu \mathrm{m}=$ \qquad mm
c. (1:10) High Power: $40 \mathrm{X}=$ \qquad $\mu \mathrm{m}=$ \qquad mm
6. Scale: (Divide diagram size by actual size.)
a. An organism has an actual length of 0.050 mm . If you draw a diagram which is 75.0 mm , what is the magnification?
b. An organism has an actual length of 0.060 mm . If you draw a diagram which is 36 mm , what is the magnification?
c. An object has an actual length of 0.025 mm . If you use a scale of $1: 1000$, what will be the size of the drawing?
d. An organism has an actual length of 0.033 mm . If you use a scale of $1: 250$, what will be the size of the drawing?

